Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Propane-1,2-diammonium tetrafluoroberyllate

Lee A. Gerrard* and Mark T. Weller

Department of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, England
Correspondence e-mail: lag4@soton.ac.uk

Received 26 June 2002
Accepted 2 September 2002
Online 30 September 2002
Cocrystallization of the inorganic $\left[\mathrm{BeF}_{4}\right]^{2-}$ unit with the organic moiety $\left[\mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{3}\right) \mathrm{CH}_{3}\right]^{2+}$ results in the threedimensional network of the title compound, $\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{BeF}_{4}\right]$ or $\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{BeF}_{4}{ }^{2-}$, created by hydrogen bonds between the protonated ammonium groups and the highly electronegative F atoms of the anion. The structure is described in terms of layers related to each other by crystallographic centres of symmetry.

Comment

Three-dimensional tetrahedral Be frameworks are very rare (Le Fur et al., 1991). Using various organic templating units, Be salts have been synthesized to provide precursors for the production of fluoro-frameworks (Le Fur et al., 1991; Anderson et al., 1973). Aqueous HF solutions, under either hydrothermal or ambient conditions, have proved to be satisfactory for the synthesis of such salts and the title compound, (I), is an example.

(I)

The coordination of Be in (I) is in the form of a slightly distorted tetrahedron (Fig. 1 and Table 1). The $\mathrm{Be}-\mathrm{F}$ bond lengths $[1.5352(17)-1.5752(17) \AA$] and the $\mathrm{F}-\mathrm{Be}-\mathrm{F}$ angles [106.86 (11)-111.12 (11) ${ }^{\circ}$] show little variation and are in good agreement with other similar geometries (Srivastava et al., 1999; Tedenac et al., 1971; Collins et al., 1983; Hahn \& Chung, 1972). In the doubly protonated 1,2 -diaminopropane group, average $\mathrm{C}-\mathrm{N}[1.492$ (1) \AA] and $\mathrm{C}-\mathrm{C}[1.521$ (2) \AA] distances (Table 1) are in good agreement with normal values (Orpen et al., 1992).

Each BeF_{4} tetrahedron in (I) is linked to six doubly protonated 1,2-diaminopropane units through $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$

Figure 1
The structure of (I), showing the role of the $\left[\mathrm{BeF}_{4}\right]^{2-}$ anion in hydrogenbond formation (dashed lines). Displacement ellipsoids are drawn at the 50% probability level. H atoms connected to the C atoms of symmetryrelated cations have been omitted for clarity, while the remaining H atoms are shown as open circles. The labelling scheme encompasses all non-H atoms of the asymmetric unit and selected other atoms [symmetry codes: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $\left.1+x, y, z\right]$.

Figure 2
A portion of a hydrogen-bonded layer in (I), viewed parallel to (001), $\frac{c}{2}$ thick and centred on $z=\frac{1}{4}$.

Figure 3
The cell of (I) viewed along a.
hydrogen bonds, characterized by $\mathrm{H} \cdots \mathrm{F}$ distances of 1.78 (2)1.91 (2) \AA (Table 2 and Figs. 1-3). Four of these interactions, namely those involving atoms $\mathrm{H} 1, \mathrm{H} 3, \mathrm{H} 8$ and H 9 , connect the ions to form sheets perpendicular to (001) (Fig. 2), in which $R_{4}^{3}(10)$ and $R_{4}^{4}(18)$ connectivity is evident (Motherwell et al., 1999). These sheets, related to each other by crystallographic centres of symmetry and stacked in the c direction, are connected by two further hydrogen bonds (Fig. 3), involving atoms H 2 and H 7 , to create, as the smallest and simplest examples, centrosymmetric $R_{4}^{4}(12)$ and non-centrosymmetric $R_{6}^{5}(19)$ connectivities.

Experimental

$\mathrm{BeF}_{2}(0.100 \mathrm{~g}, 0.0022 \mathrm{~mol})$ was dissolved in an acidic aqueous mixture of distilled water (2 ml) and 30% hydrofluoric acid $(0.085 \mathrm{ml}$, 0.002 mol). 1,2-Diaminopropane ($0.17 \mathrm{ml}, 0.002 \mathrm{~mol}$) was added to give an overall molar ratio of 1:1:1. The resulting solution was placed in a plastic sample vial and left to concentrate slowly by evaporation, yielding colourless crystals of (I), which were recovered by filtration and air dried.

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{BeF}_{4}\right]$
$M_{r}=161.16$
Monoclinic, $P 2_{1} / n$
$a=5.5355$ (11) A
$b=13.560$ (3) \AA
$c=9.6048$ (19) A
$\beta=106.73$ (3) ${ }^{\circ}$
$V=690.4$ (3) \AA^{3}
$Z=4$

$$
\begin{aligned}
& D_{x}=1.55 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1114 \\
& \quad \text { reflections } \\
& \theta=2.9-27.5^{\circ} \\
& \mu=0.17 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.14 \times 0.08 \times 0.04 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans to fill the Ewald sphere
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.745, T_{\text {max }}=0.993$
3623 measured reflections

Refinement

Refinement on F^{2}
$R(F)=0.030$
$w R\left(F^{2}\right)=0.077$
$S=1.04$
1530 reflections
135 parameters
H atoms: see below
1530 independent reflections
1294 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-6 \rightarrow 7$
$k=-14 \rightarrow 17$
$l=-12 \rightarrow 9$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.033 P)^{2}\right. \\
& +0.118] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Be1-F1	$1.5352(17)$	Be1-F4	$1.5492(17)$
Be1-F2	$1.5752(17)$	N1-C1	$1.4849(16)$
Be1-F3	$1.5603(19)$	N2-C2	$1.4969(15)$
N1-C1-C2	$112.17(10)$	F1-Be1-F4	$109.50(11)$
N2-C2-C3	$107.73(10)$	F2-Be1-F3	$109.67(11)$
N2-C2-C1	$106.04(10)$	F2-Be1-F4	$106.86(11)$
F1-Be1-F2	$110.97(10)$	F3-Be1-F4	$108.59(10)$
F1-Be1-F3	$111.12(11)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~F}^{\text {vi }}$	$0.90(2)$	$1.86(2)$	$2.7461(13)$	$169.8(13)$
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{~F}^{\text {vii }}$	$0.88(2)$	$1.78(2)$	$2.6446(13)$	$165.4(15)$
$\mathrm{N} 1-\mathrm{H} 3 \cdots \mathrm{FF}^{\text {viii }}$	$0.90(2)$	$1.89(2)$	$2.7646(15)$	$163.5(15)$
$\mathrm{N} 2-\mathrm{H} 7 \cdots \mathrm{~F}^{\text {ix }}$	$0.88(2)$	$1.87(2)$	$2.7507(14)$	$175.5(14)$
N2-H8 $\cdots \mathrm{F}^{\mathrm{x}}$	$0.90(2)$	$1.87(2)$	$2.7611(13)$	$171.8(13)$
$\mathrm{N} 2-\mathrm{H} \cdots \cdots \mathrm{F} 2$	$0.94(2)$	$1.91(2)$	$2.8240(16)$	$163.3(14)$

Symmetry codes: (vi) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (vii) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; (viii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ix) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2} ;($ (x) $x-1, y, z$.

The authors wish to thank the EPSRC for funding and the EPSRC Crystallography Service for the use of the KappaCCD diffractometer. They are grateful to a referee for helpful suggestions.

All H atoms, with one exception (H6), were located in difference maps and refined isotropically. Atom H6, attached to tertiary atom C 2 , which could not be refined satisfactorily in this manner, was fixed in a position with $\mathrm{C}-\mathrm{H}=1.00 \AA$ and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: COLLECT (Nonius, 1998); cell refinement: $H K L$ SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to solve structure: $\operatorname{SHELXS97}$ (Sheldrick, 1997);
program(s) used to refine structure: $\operatorname{SHELXL97}$ (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 1990, 1998). PLATON (Spek, 1990, 1998).

